Translations (PDF)
- Chinese
- Dutch
- French
- German
- Japanese
- Portuguese
- Spanish
- Turkish
- Vietnamese
Basics
ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points.
library(ggplot2)
To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.
Complete the template below to build a graph.
ggplot(data = <Data>) + <Geom_Function>(mapping = aes(<Mappings>), stat = <Stat>, position = <Position>) + <Coordinate_Function> + <Facet_Function> + <Scale_Function> + <Theme_Function>
Data, a Geom Function, and Aes Mappings are required. Stat, Position, and the Coordinate, Facet, Scale, and Theme functions are not required and will supply sensible defaults.
ggplot(data = mpg, aes(x = cty, y = hwy))
: Begins a plot that you finish by adding layers to. Add one geom function per layer.last_plot()
: Returns the last plot.ggsave("plot.png", width = 5, height = 5)
: Saves last plot as 5’ x 5’ file named “plot.png” in working directory. Matches file type to file extension.
Aes
Common aesthetic values.
color
andfill
: String ("red"
,"#RRGGBB"
).linetype
: Integer or string (0 ="blank"
, 1 ="solid"
, 2 ="dashed"
, 3 ="dotted"
, 4 ="dotdash"
, 5 ="longdash"
, 6 ="twodash"
).size
: Integer (in mm for size of points and text).linewidth
: Integer (in mm for widths of lines).shape
: Integer/shape name or a single character ("a"
).shape
integer/name pairs: 0 ="square open"
, 1 ="circle open"
, 2 ="triangle open"
, 3 ="plus"
, 4 ="cross"
, 5 ="diamond open"
, 6 ="triangle down open"
, 7 ="square cross"
, 8 ="asterisk"
, 9 ="diamond plus"
, 10 ="circle plus"
, 11 ="star"
, 12 ="square plus"
, 13 ="circle cross"
, 14 ="square triangle"
, 15 ="square"
, 16 ="circle"
, 17 ="triangle"
, 18 ="diamond"
, 19 ="circle small"
, 20 ="bullet"
, 21 ="circle filled"
, 22 ="square filled"
, 23 ="diamond filled"
, 24 ="triangle filled"
, 25 ="triangle down filled"
Geoms
Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables. Each function returns a layer.
Graphical Primitives
a <- ggplot(economics, aes(date, unemploy))b <- ggplot(seals, aes(x = long, y = lat))
a + geom_blank()
anda + expand_limits()
: Ensure limits include values across all plots.b + geom_curve(aes(yend = lat + 1, xend = long + 1), curvature = 1)
: Draw a curved line from(x, y)
to(xend, yend)
.aes()
arguments:x
,xend
,y
,yend
,alpha
,angle
,color
,curvature
,linetype
,size
.a + geom_path(lineend = "butt", linejoin = "round", linemitre = 1)
: Connect observations in the order they appear.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,size
.a + geom_polygon(aes(alpha = 50))
: Connect points into polygons.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,subgroup
,linetype
,size
.b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1))
: Draw a rectangle by connecting four corners (xmin
,xmax
,ymin
,ymax
).aes()
arguments:xmax
,xmin
,ymax
,ymin
,alpha
,color
,fill
,linetype
,size
.a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)
: For eachx
, plot an interval fromymin
toymax
.aes()
arguments:x
,ymax
,ymin
,alpha
,color
,fill
,group
,linetype
,size
.
Line Segments
Common aesthetics: x
, y
, alpha
, color
, linetype
, size
, linewidth
.
b + geom_abline(aes(intercept = 0, slope = 1))
: Draw a diagonal reference line with a givenslope
andintercept
.b + geom_hline(aes(yintercept = lat))
: Draw a horizontal reference line with a givenyintercept
.b + geom_vline(aes(xintercept = long))
: Draw a vertical reference line with a givenxintercept
.b + geom_segment(aes(yend = lat + 1, xend = long + 1))
: Draw a straight line from(x, y)
to(xend, yend)
.b + geom_spoke(aes(angle = 1:1155, radius = 1))
: Draw line segments using polar coordinates (angle
andradius
).
One Variable - Continuous
c <- ggplot(mpg, aes(hwy))c2 <- ggplot(mpg)
c + geom_area(stat = "bin")
: Draw an area plot.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,linewidth
.c + geom_density(kernel = "gaussian")
: Compute and draw kernel density estimates.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,linetype
,linewidth
,weight
.c + geom_dotplot()
: Draw a dot plot.aes()
arguments:x
,y
,alpha
,color
,fill
.c + geom_freqpoly()
: Draw a frequency polygon.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,linewidth
.c + geom_histogram(binwidth = 5)
: Draw a histogram.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,linewidth
,weight
.c2 + geom_qq(aes(sample = hwy))
: Draw a quantile-quantile plot.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,size
,weight
.
One Variable - Discrete
d <- ggplot(mpg, aes(fl))
d + geom_bar()
: Draw a bar chart.aes()
arguments:x
,alpha
,color
,fill
,linetype
,linewidth
,weight
.
Two Variables - Both Continuous
e <- ggplot(mpg, aes(cty, hwy))
e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1)
: Add text with a rectangle background.aes()
arguments: -x
,y
,label
,alpha
,angle
,color
,family
,fontface
,hjust
,lineheight
,size
,vjust
.e + geom_point()
: Draw a scatter plot.aes()
arguments:x
,y
,alpha
,color
,fill
,shape
,size
,stroke
.e + geom_quantile()
: Fit and draw quantile regression for the plot data.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,linewidth
,weight
.e + geom_rug(sides = "bl")
: Draw a rug plot.aes()
arguments:x
,y
,alpha
,color
,linetype
,linewidth
.e + geom_smooth(method = lm)
: Plot smoothed conditional means.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,linetype
,linewidth
,weight
.e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1)
: Add text to a plot.aes()
arguments:x
,y
,label
,alpha
,angle
,color
,family
,fontface
,hjust
,lineheight
,size
,vjust
.
Two Variables - One Discrete, One Continuous
f <- ggplot(mpg, aes(class, hwy))
f + geom_col()
: Draw a bar plot.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,linetype
,linewidth
.f + geom_boxplot()
: Draw a box plot.aes()
arguments:x
,y
,lower
,middle
,upper
,ymax
,ymin
,alpha
,color
,fill
,group
,linetype
,shape
,linewidth
,weight
.f + geom_dotplot(binaxis ="y", stackdir = "center")
: Draw a dot plot.aes()
arguments:x
,y
,alpha
,color
,fill
,group
.f + geom_violin(scale = "area")
: Draw a violin plot.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,linetype
,linewidth
,weight
.
Two Variables - Both Discrete
g <- ggplot(diamonds, aes(cut, color))
g + geom_count()
: Plot a count of points in an area to address over plotting.aes()
arguments:x
,y
,alpha
,color
,fill
,shape
,size
,stroke
.e + geom_jitter(height = 2, width = 2)
: Jitter points in a plot.aes()
arguments:x
,y
,alpha
,color
,fill
,shape
,size
.
Two Variables - Continuous Bivariate Distribution
h <- ggplot(diamonds, aes(carat, price))
h + geom_bin2d(binwidth = c(0.25, 500))
: Draw a heatmap of 2D rectangular bin counts.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,size
,weight
.h + geom_density_2d()
: Plot contours from 2D kernel density estimation.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,linewidth
.h + geom_hex()
: Draw a heatmap of 2D hexagonal bin counts.aes()
arguments:x
,y
,alpha
,color
,fill
,linewidth
.
Two Variables - Continuous Function
i <- ggplot(economics, aes(date, unemploy))
i + geom_area()
: Draw an area plot.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,linewidth
.i + geom_line()
: Connect data points, ordered by the x axis variable.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,linewidth
.i + geom_step(direction = "hv"
: Draw a stairstep plot.aes()
arguments:x
,y
,alpha
,color
,group
,linetype
,linewidth
.
Two Variables - Visualizing Error
df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))
j + geom_crossbar(fatten = 2)
: Draw a crossbar.aes()
arguments:x
,y
,ymax
,ymin
,alpha
,color
,fill
,group
,linetype
,linewidth
.j + geom_errorbar()
: Draw an errorbar. Alsogeom_errorbarh()
.aes()
arguments:x
,ymax
,ymin
,alpha
,color
,group
,linetype
,linewidth
,width
.j + geom_linerange()
: Draw a line range.aes()
arguments:x
,ymin
,ymax
,alpha
,color
,group
,linetype
,linewidth
.j + geom_pointrange()
: Draw a point range.aes()
arguments:x
,y
,ymin
,ymax
,alpha
,color
,fill
,group
,linetype
,shape
,linewidth
.
Two Variables - Maps
Draw the appropriate geometric object depending on the simple features present in the data. aes()
arguments: map_id
, alpha
, color
, fill
, linetype
, linewidth
.
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))ggplot(nc) + geom_sf(aes(fill = AREA))
Three Variables
seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))l <- ggplot(seals, aes(long, lat))
l + geom_contour(aes(z = z))
: Draw 2D contour plot.aes()
arguments:x
,y
,z
,alpha
,color
,group
,linetype
,linewidth
,weight
.l + geom_contour_filled(aes(fill = z))
: Draw 2D contour plot with the space between lines filled.aes()
arguments:x
,y
,alpha
,color
,fill
,group
,linetype
,linewidth
,subgroup
.l + geom_raster(aes(fill = z), hjust = 0.5, vjust = 0.5, interpolate = FALSE)
: Draw a raster plot.aes()
arguments:x
,y
,alpha
,fill
.l + geom_tile(aes(fill = z))
: Draw a tile plot.aes()
arguments:x
,y
,alpha
,color
,fill
,linetype
,linewidth
,width
.
Stats
An alternative way to build a layer.
A stat builds new variables to plot (e.g., count, prop).
Visualize a stat by changing the default stat of a geom function, geom_bar(stat = "count")
, or by using a stat function, stat_count(geom = "bar")
, which calls a default geom to make a layer (equivalent to a geom function). Use after_stat(name)
syntax to map the stat variable name
to an aesthetic.
i + stat_density_2d(aes(fill = after_stat(level)), geom = "polygon")
In this example, "polygon"
is the geom to use, stat_density_2d()
is the stat function, aes()
contains the geom mappings, and level
is the variable created by stat.
c + stat_bin(binwidth = 1, boundary = 10)
:x
,y
|count
,ncount
,density
,ndensity
c + stat_count(width = 1)
:x
,y
|count
,density
c + stat_density(adjust = 1, kernel = "gaussian")
:x
,y
|count
,density
,scaled
e + stat_bin_2d(bins = 30, drop = T)
:x
,y
,fill
|count
,density
e + stat_bin_hex(bins =30)
:x
,y
,fill
|count
,density
e + stat_density_2d(contour = TRUE, n = 100)
:x
,y
,color
,linewidth
|level
e + stat_ellipse(level = 0.95, segments = 51, type = "t")
l + stat_contour(aes(z = z))
:x
,y
,z
,order
|level
l + stat_summary_hex(aes(z = z), bins = 30, fun = max)
:x
,y
,z
,fill
|value
l + stat_summary_2d(aes(z = z), bins = 30, fun = mean)
:x
,y
,z
,fill
|value
f + stat_boxplot(coef = 1.5)
:x
,y
|lower
,middle
,upper
,width
,ymin
,ymax
f + stat_ydensity(kernel = "gaussian", scale = "area")
:x
,y
|density
,scaled
,count
,n
,violinwidth
,width
e + stat_ecdf(n = 40)
:x
,y
|x
,y
e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~ log(x), method = "rq")
:x
,y
|quantile
e + stat_smooth(method = "lm", formula = y ~ x, se = T, level = 0.95)
:x
,y
|se
,x
,y
,ymin
,ymax
ggplot() + xlim(-5, 5) + stat_function(fun = dnorm, n = 20, geom = "point")
:x
|x
,y
ggplot() + stat_qq(aes(sample = 1:100))
:x
,y
,sample
|sample
,theoretical
e + stat_sum()
:x
,y
,size
|n
,prop
e + stat_summary(fun.data = "mean_cl_boot")
h + stat_summary_bin(fun = "mean", geom = "bar")
e + stat_identity()
e + stat_unique()
Scales
Override defaults with scales package.
Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.
n <- d + geom_bar(aes(fill = fl))n + scale_fill_manual( values = c("skyblue", "royalblue", "blue", "navy"), limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", "r"), name = "fuel", labels = c("D", "E", "P", "R"))
In this example, scale_
specifies a scale function, fill
is the aesthetic to adjust, and manual
is the prepackaged scale to use.
values
contains scale-specific arguments, limits
specifies the range of values to include in mappings, breaks
specifies the breaks to use in legend/axis, and name
and labels
specify the title and labels to use in the legend/axis.
General Purpose Scales
Use with most aesthetics.
scale_*_continuous()
: Map continuous values to visual ones.scale_*_discrete()
: Map discrete values to visual ones.scale_*_binned()
: Map continuous values to discrete bins.scale_*_identity()
: Use data values as visual ones.scale_*_manual(values = c())
: Map discrete values to manually chosen visual ones.scale_*_date(date_labels = "%m/%d", date_breaks = "2 weeks")
: Treat data values as dates.scale_*_datetime()
: Treat data values as date times. Same asscale_*_date()
. See?strptime
for label formats.
X & Y Location Scales
Use with x or y aesthetics (x shown here).
scale_x_log10()
: Plotx
on log10 scale.scale_x_reverse()
: Reverse the direction of the x axis.scale_x_sqrt()
: Plotx
on square root scale.
Color and Fill Scales (Discrete)
n + scale_fill_brewer(palette = "Blues")
: Use color scales from ColorBrewer. For palette choicesRColorBrewer::display.brewer.all()
.n + scale_fill_grey(start = 0.2, end = 0.8, na.value = "red")
: Use a grey gradient color scale.
Color and Fill Scales (Continuous)
o <- c + geom_dotplot(aes(fill = ..x..))
o + scale_fill_distiller(palette = "Blues")
: Interpolate a palette into a continuous scale.o + scale_fill_gradient(low = "red", high = "yellow")
: Create a two color gradient.o + scale_fill_gradient2(low = "red", high = "blue", mid = "white", midpoint = 25)
: Create a diverging color gradient.o + scale_fill_gradientn(colors = topo.colors(6))
: Create a n-color gradient. Alsorainbow()
,heat.colors()
,terrain.colors()
,cm.colors()
,RColorBrewer::brewer.pal()
.
Shape and Size Scales
p <- e + geom_point(aes(shape = fl, size = cyl))
p + scale_shape() + scale_size()
: Map discrete values to shape and size aesthetics.p + scale_shape_manual(values = c(3:7))
: Map discrete values to specified shape values.p + scale_radius(range = c(1,6))
: Map values to a shape’s radius.p + scale_size_area(max_size = 6)
: Likescale_size()
but maps zero values to zero size.
Shapes used here are the same as the ones listed in the Aes section.
Coordinate Systems
u <- d + geom_bar()
u + coord_cartesian(xlim = c(0, 5))
:xlim
,ylim
. The default Cartesian coordinate system.u + coord_fixed(ratio = 1/2)
:ratio
,xlim
,ylim
. Cartesian coordinates with fixed aspect ration between x and y units.ggplot(mpg, aes(y = fl)) + geom_bar()
: Flip Cartesian coordinates by switching x and y aesthetic mappings.u + coord_polar(theta = "x", direction = 1)
:theta
,start
,direction
. Polar coordinates.u + coord_trans(y = "sqrt")
:x
,y
,xlim
,ylim
. Transformed Cartesian coordinates. Setxtrans
andytrans
to the name of a window function.π + coord_sf()
:xlim
,ylim
,crs
. Ensures all layers use a common Coordinate Reference System.
Position Adjustments
Position adjustments determine how to arrange geoms that would otherwise occupy the same space.
s <- ggplot(mpg, aes(fl, fill = drv))
s + geom_bar(position = "dodge")
: Arrange elements side by side.s + geom_bar(position = "fill")
: Stack elements on top of one another, normalize height.e + geom_point(position = "jitter")
: Add random noise to X and Y position of each element to avoid over plotting.e + geom_label(position = "nudge")
: Nudge labels away from points.s + geom_bar(position = "stack")
: Stack elements on top of one another.
Each position adjustment can be recast as a function with manual width
and height
arguments:
s + geom_bar(position = position_dodge(width = 1))
Themes
u + theme_bw()
: White background with grid lines.u + theme_gray()
: Grey background with white grid lines (default theme).u + theme_dark()
: Dark grey background and grid lines for contrast.u + theme_classic()
: No grid lines.u + theme_light()
: Light grey axes and grid lines.u + theme_linedraw()
: Uses only black lines.u + theme_minimal()
: Minimal theme.u + theme_void()
: Empty theme.u + theme()
: Customize aspects of the theme such as axis, legend, panel, and facet properties.
u + labs(title = "Title") + theme(plot.title.position = "plot")
u + theme(panel.background = element_rect(fill = "blue"))
Faceting
Facets divide a plot into subplots based on the values of one or more discrete variables.
t <- ggplot(mpg, aes(cty, hwy)) + geom_point()
t + facet_grid(. ~ fl)
: Facet into a column based on fl.t + facet_grid(year ~ .)
: Facet into rows based on year.t + facet_grid(year ~ fl)
: Facet into both rows and columns.t + facet_wrap(~ fl)
: Wrap facets into a rectangular layout.t + facet_grid(drv ~ fl, scales = "free")
: Set scales to let axis limits vary across facets. Also"free_x"
for x axis limits adjust to individual facets and"free_y"
for y axis limits adjust to individual facets.
Set labeller to adjust facet label:
t + facet_grid(. ~ fl, labeller = label_both)
: Labels each facet as “fl: c”, “fl: d”, etc.t + facet_grid(fl ~ ., labeller = label_bquote(alpha ^ .(fl)))
: Labels each facet as “𝛼c”, “𝛼d”, etc.
Labels and Legends
Use labs()
to label elements of your plot.
t + labs(x = "New x axis label", y = "New y axis label", title ="Add a title above the plot", subtitle = "Add a subtitle below title", caption = "Add a caption below plot", alt = "Add alt text to the plot", <Aes> = "New <Aes> legend title")
t + annotate(geom = "text", x = 8, y = 9, label = "A")
: Places a geom with manually selected aesthetics.p + guides(x = guide_axis(n.dodge = 2))
: Avoid crowded or overlapping labels withguide_axis(n.dodge or angle)
.n + guides(fill = "none")
: Set legend type for each aesthetic:colorbar
,legend
, ornone
(no legend).n + theme(legend.position = "bottom")
: Place legend at “bottom”, “top”, “left”, or “right”.n + scale_fill_discrete(name = "Title", labels = c("A", "B", "C", "D", "E"))
: Set legend title and labels with a scale function.
Zooming
t + coord_cartesian(xlim = c(0, 100), ylim = c(10,20))
: Zoom without clipping (preferred).t + xlim(0, 100) + ylim(10, 20)
ort + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100))
: Zoom with clipping (removes unseen data points).
CC BY SA Posit Software, PBC • info@posit.co • posit.co
Learn more at ggplot2.tidyverse.org.
Updated: 2024-05.
packageVersion("ggplot2")
[1] '3.5.1'