Data visualization with ggplot2 :: Cheat Sheet (2024)

Data visualization with ggplot2 :: Cheat Sheet (1)

Download PDF

Translations (PDF)

  • Chinese
  • Dutch
  • French
  • German
  • Japanese
  • Portuguese
  • Spanish
  • Turkish
  • Vietnamese

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms—visual marks that represent data points.

library(ggplot2)

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot(data = <Data>) + <Geom_Function>(mapping = aes(<Mappings>), stat = <Stat>, position = <Position>) + <Coordinate_Function> + <Facet_Function> + <Scale_Function> + <Theme_Function>

Data, a Geom Function, and Aes Mappings are required. Stat, Position, and the Coordinate, Facet, Scale, and Theme functions are not required and will supply sensible defaults.

  • ggplot(data = mpg, aes(x = cty, y = hwy)): Begins a plot that you finish by adding layers to. Add one geom function per layer.

  • last_plot(): Returns the last plot.

  • ggsave("plot.png", width = 5, height = 5): Saves last plot as 5’ x 5’ file named “plot.png” in working directory. Matches file type to file extension.

Aes

Common aesthetic values.

  • color and fill: String ("red", "#RRGGBB").

  • linetype: Integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash").

  • size: Integer (in mm for size of points and text).

  • linewidth: Integer (in mm for widths of lines).

  • shape: Integer/shape name or a single character ("a").

    • shape integer/name pairs: 0 = "square open", 1 = "circle open", 2 = "triangle open", 3 = "plus", 4 = "cross", 5 = "diamond open", 6 = "triangle down open", 7 = "square cross", 8 = "asterisk", 9 = "diamond plus", 10 = "circle plus", 11 = "star", 12 = "square plus", 13 = "circle cross", 14 = "square triangle", 15 = "square", 16 = "circle", 17 = "triangle", 18 = "diamond", 19 = "circle small", 20 = "bullet", 21 = "circle filled", 22 = "square filled", 23 = "diamond filled", 24 = "triangle filled", 25 = "triangle down filled"

Geoms

Use a geom function to represent data points, use the geom’s aesthetic properties to represent variables. Each function returns a layer.

Graphical Primitives

a <- ggplot(economics, aes(date, unemploy))b <- ggplot(seals, aes(x = long, y = lat))
  • a + geom_blank() and a + expand_limits(): Ensure limits include values across all plots.

  • b + geom_curve(aes(yend = lat + 1, xend = long + 1), curvature = 1): Draw a curved line from (x, y) to (xend, yend). aes() arguments: x, xend, y, yend, alpha, angle, color, curvature, linetype, size.

  • a + geom_path(lineend = "butt", linejoin = "round", linemitre = 1): Connect observations in the order they appear. aes() arguments: x, y, alpha, color, group, linetype, size.

  • a + geom_polygon(aes(alpha = 50)): Connect points into polygons. aes() arguments: x, y, alpha, color, fill, group, subgroup, linetype, size.

  • b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1)): Draw a rectangle by connecting four corners (xmin, xmax, ymin, ymax). aes() arguments: xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size.

  • a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900): For each x, plot an interval from ymin to ymax. aes() arguments: x, ymax, ymin, alpha, color, fill, group, linetype, size.

Line Segments

Common aesthetics: x, y, alpha, color, linetype, size, linewidth.

  • b + geom_abline(aes(intercept = 0, slope = 1)): Draw a diagonal reference line with a given slope and intercept.

  • b + geom_hline(aes(yintercept = lat)): Draw a horizontal reference line with a given yintercept.

  • b + geom_vline(aes(xintercept = long)): Draw a vertical reference line with a given xintercept.

  • b + geom_segment(aes(yend = lat + 1, xend = long + 1)): Draw a straight line from (x, y) to (xend, yend).

  • b + geom_spoke(aes(angle = 1:1155, radius = 1)): Draw line segments using polar coordinates (angle and radius).

One Variable - Continuous

c <- ggplot(mpg, aes(hwy))c2 <- ggplot(mpg)
  • c + geom_area(stat = "bin"): Draw an area plot. aes() arguments: x, y, alpha, color, fill, linetype, linewidth.

  • c + geom_density(kernel = "gaussian"): Compute and draw kernel density estimates. aes() arguments: x, y, alpha, color, fill, group, linetype, linewidth, weight.

  • c + geom_dotplot(): Draw a dot plot. aes() arguments: x, y, alpha, color, fill.

  • c + geom_freqpoly(): Draw a frequency polygon. aes() arguments: x, y, alpha, color, group, linetype, linewidth.

  • c + geom_histogram(binwidth = 5): Draw a histogram. aes() arguments: x, y, alpha, color, fill, linetype, linewidth, weight.

  • c2 + geom_qq(aes(sample = hwy)): Draw a quantile-quantile plot. aes() arguments: x, y, alpha, color, fill, linetype, size, weight.

One Variable - Discrete

d <- ggplot(mpg, aes(fl))
  • d + geom_bar(): Draw a bar chart. aes() arguments: x, alpha, color, fill, linetype, linewidth, weight.

Two Variables - Both Continuous

e <- ggplot(mpg, aes(cty, hwy))
  • e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1): Add text with a rectangle background. aes() arguments: - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust.

  • e + geom_point(): Draw a scatter plot. aes() arguments: x, y, alpha, color, fill, shape, size, stroke.

  • e + geom_quantile(): Fit and draw quantile regression for the plot data. aes() arguments: x, y, alpha, color, group, linetype, linewidth, weight.

  • e + geom_rug(sides = "bl"): Draw a rug plot. aes() arguments: x, y, alpha, color, linetype, linewidth.

  • e + geom_smooth(method = lm): Plot smoothed conditional means. aes() arguments: x, y, alpha, color, fill, group, linetype, linewidth, weight.

  • e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1): Add text to a plot. aes() arguments: x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust.

Two Variables - One Discrete, One Continuous

f <- ggplot(mpg, aes(class, hwy))
  • f + geom_col(): Draw a bar plot. aes() arguments: x, y, alpha, color, fill, group, linetype, linewidth.

  • f + geom_boxplot(): Draw a box plot. aes() arguments: x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, linewidth, weight.

  • f + geom_dotplot(binaxis ="y", stackdir = "center"): Draw a dot plot. aes() arguments: x, y, alpha, color, fill, group.

  • f + geom_violin(scale = "area"): Draw a violin plot. aes() arguments: x, y, alpha, color, fill, group, linetype, linewidth, weight.

Two Variables - Both Discrete

g <- ggplot(diamonds, aes(cut, color))
  • g + geom_count(): Plot a count of points in an area to address over plotting. aes() arguments: x, y, alpha, color, fill, shape, size, stroke.

  • e + geom_jitter(height = 2, width = 2): Jitter points in a plot. aes() arguments: x, y, alpha, color, fill, shape, size.

Two Variables - Continuous Bivariate Distribution

h <- ggplot(diamonds, aes(carat, price))
  • h + geom_bin2d(binwidth = c(0.25, 500)): Draw a heatmap of 2D rectangular bin counts. aes() arguments: x, y, alpha, color, fill, linetype, size, weight.

  • h + geom_density_2d(): Plot contours from 2D kernel density estimation. aes() arguments: x, y, alpha, color, group, linetype, linewidth.

  • h + geom_hex(): Draw a heatmap of 2D hexagonal bin counts. aes() arguments: x, y, alpha, color, fill, linewidth.

Two Variables - Continuous Function

i <- ggplot(economics, aes(date, unemploy))
  • i + geom_area(): Draw an area plot. aes() arguments: x, y, alpha, color, fill, linetype, linewidth.

  • i + geom_line(): Connect data points, ordered by the x axis variable. aes() arguments: x, y, alpha, color, group, linetype, linewidth.

  • i + geom_step(direction = "hv": Draw a stairstep plot. aes() arguments: x, y, alpha, color, group, linetype, linewidth.

Two Variables - Visualizing Error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))
  • j + geom_crossbar(fatten = 2): Draw a crossbar. aes() arguments: x, y, ymax, ymin, alpha, color, fill, group, linetype, linewidth.

  • j + geom_errorbar(): Draw an errorbar. Also geom_errorbarh(). aes() arguments: x, ymax, ymin, alpha, color, group, linetype, linewidth, width.

  • j + geom_linerange(): Draw a line range. aes() arguments: x, ymin, ymax, alpha, color, group, linetype, linewidth.

  • j + geom_pointrange(): Draw a point range. aes() arguments: x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, linewidth.

Two Variables - Maps

Draw the appropriate geometric object depending on the simple features present in the data. aes() arguments: map_id, alpha, color, fill, linetype, linewidth.

nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))ggplot(nc) + geom_sf(aes(fill = AREA))

Three Variables

seals$z <- with(seals, sqrt(delta_long^2 + delta_lat^2))l <- ggplot(seals, aes(long, lat))
  • l + geom_contour(aes(z = z)): Draw 2D contour plot. aes() arguments: x, y, z, alpha, color, group, linetype, linewidth, weight.

  • l + geom_contour_filled(aes(fill = z)): Draw 2D contour plot with the space between lines filled. aes() arguments: x, y, alpha, color, fill, group, linetype, linewidth, subgroup.

  • l + geom_raster(aes(fill = z), hjust = 0.5, vjust = 0.5, interpolate = FALSE): Draw a raster plot. aes() arguments: x, y, alpha, fill.

  • l + geom_tile(aes(fill = z)): Draw a tile plot. aes() arguments: x, y, alpha, color, fill, linetype, linewidth, width.

Stats

An alternative way to build a layer.

A stat builds new variables to plot (e.g., count, prop).

Visualize a stat by changing the default stat of a geom function, geom_bar(stat = "count"), or by using a stat function, stat_count(geom = "bar"), which calls a default geom to make a layer (equivalent to a geom function). Use after_stat(name) syntax to map the stat variable name to an aesthetic.

i + stat_density_2d(aes(fill = after_stat(level)), geom = "polygon")

In this example, "polygon" is the geom to use, stat_density_2d() is the stat function, aes() contains the geom mappings, and level is the variable created by stat.

  • c + stat_bin(binwidth = 1, boundary = 10): x, y | count, ncount, density, ndensity

  • c + stat_count(width = 1): x, y | count, density

  • c + stat_density(adjust = 1, kernel = "gaussian"): x, y | count, density, scaled

  • e + stat_bin_2d(bins = 30, drop = T): x, y, fill | count, density

  • e + stat_bin_hex(bins =30): x, y, fill | count, density

  • e + stat_density_2d(contour = TRUE, n = 100): x, y, color, linewidth | level

  • e + stat_ellipse(level = 0.95, segments = 51, type = "t")

  • l + stat_contour(aes(z = z)): x, y, z, order | level

  • l + stat_summary_hex(aes(z = z), bins = 30, fun = max): x, y, z, fill | value

  • l + stat_summary_2d(aes(z = z), bins = 30, fun = mean): x, y, z, fill | value

  • f + stat_boxplot(coef = 1.5): x, y | lower, middle, upper, width, ymin, ymax

  • f + stat_ydensity(kernel = "gaussian", scale = "area"): x, y | density, scaled, count, n, violinwidth, width

  • e + stat_ecdf(n = 40): x, y | x, y

  • e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~ log(x), method = "rq"): x, y | quantile

  • e + stat_smooth(method = "lm", formula = y ~ x, se = T, level = 0.95): x, y | se, x, y, ymin, ymax

  • ggplot() + xlim(-5, 5) + stat_function(fun = dnorm, n = 20, geom = "point"): x | x, y

  • ggplot() + stat_qq(aes(sample = 1:100)): x, y, sample | sample, theoretical

  • e + stat_sum(): x, y, size | n, prop

  • e + stat_summary(fun.data = "mean_cl_boot")

  • h + stat_summary_bin(fun = "mean", geom = "bar")

  • e + stat_identity()

  • e + stat_unique()

Scales

Override defaults with scales package.

Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.

n <- d + geom_bar(aes(fill = fl))n + scale_fill_manual( values = c("skyblue", "royalblue", "blue", "navy"), limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", "r"), name = "fuel",  labels = c("D", "E", "P", "R"))

In this example, scale_ specifies a scale function, fill is the aesthetic to adjust, and manual is the prepackaged scale to use.

values contains scale-specific arguments, limits specifies the range of values to include in mappings, breaks specifies the breaks to use in legend/axis, and name and labels specify the title and labels to use in the legend/axis.

General Purpose Scales

Use with most aesthetics.

  • scale_*_continuous(): Map continuous values to visual ones.

  • scale_*_discrete(): Map discrete values to visual ones.

  • scale_*_binned(): Map continuous values to discrete bins.

  • scale_*_identity(): Use data values as visual ones.

  • scale_*_manual(values = c()): Map discrete values to manually chosen visual ones.

  • scale_*_date(date_labels = "%m/%d", date_breaks = "2 weeks"): Treat data values as dates.

  • scale_*_datetime(): Treat data values as date times. Same as scale_*_date(). See ?strptime for label formats.

X & Y Location Scales

Use with x or y aesthetics (x shown here).

  • scale_x_log10(): Plot x on log10 scale.

  • scale_x_reverse(): Reverse the direction of the x axis.

  • scale_x_sqrt(): Plot x on square root scale.

Color and Fill Scales (Discrete)

  • n + scale_fill_brewer(palette = "Blues"): Use color scales from ColorBrewer. For palette choices RColorBrewer::display.brewer.all().

  • n + scale_fill_grey(start = 0.2, end = 0.8, na.value = "red"): Use a grey gradient color scale.

Color and Fill Scales (Continuous)

o <- c + geom_dotplot(aes(fill = ..x..))
  • o + scale_fill_distiller(palette = "Blues"): Interpolate a palette into a continuous scale.

  • o + scale_fill_gradient(low = "red", high = "yellow"): Create a two color gradient.

  • o + scale_fill_gradient2(low = "red", high = "blue", mid = "white", midpoint = 25): Create a diverging color gradient.

  • o + scale_fill_gradientn(colors = topo.colors(6)): Create a n-color gradient. Also rainbow(), heat.colors(), terrain.colors(), cm.colors(), RColorBrewer::brewer.pal().

Shape and Size Scales

p <- e + geom_point(aes(shape = fl, size = cyl))
  • p + scale_shape() + scale_size(): Map discrete values to shape and size aesthetics.

  • p + scale_shape_manual(values = c(3:7)): Map discrete values to specified shape values.

  • p + scale_radius(range = c(1,6)): Map values to a shape’s radius.

  • p + scale_size_area(max_size = 6): Like scale_size() but maps zero values to zero size.

Shapes used here are the same as the ones listed in the Aes section.

Coordinate Systems

u <- d + geom_bar()
  • u + coord_cartesian(xlim = c(0, 5)): xlim, ylim. The default Cartesian coordinate system.

  • u + coord_fixed(ratio = 1/2): ratio, xlim, ylim. Cartesian coordinates with fixed aspect ration between x and y units.

  • ggplot(mpg, aes(y = fl)) + geom_bar(): Flip Cartesian coordinates by switching x and y aesthetic mappings.

  • u + coord_polar(theta = "x", direction = 1): theta, start, direction. Polar coordinates.

  • u + coord_trans(y = "sqrt"): x, y, xlim, ylim. Transformed Cartesian coordinates. Set xtrans and ytrans to the name of a window function.

  • π + coord_sf(): xlim, ylim, crs. Ensures all layers use a common Coordinate Reference System.

Position Adjustments

Position adjustments determine how to arrange geoms that would otherwise occupy the same space.

s <- ggplot(mpg, aes(fl, fill = drv))
  • s + geom_bar(position = "dodge"): Arrange elements side by side.

  • s + geom_bar(position = "fill"): Stack elements on top of one another, normalize height.

  • e + geom_point(position = "jitter"): Add random noise to X and Y position of each element to avoid over plotting.

  • e + geom_label(position = "nudge"): Nudge labels away from points.

  • s + geom_bar(position = "stack"): Stack elements on top of one another.

Each position adjustment can be recast as a function with manual width and height arguments:

s + geom_bar(position = position_dodge(width = 1))

Themes

  • u + theme_bw(): White background with grid lines.

  • u + theme_gray(): Grey background with white grid lines (default theme).

  • u + theme_dark(): Dark grey background and grid lines for contrast.

  • u + theme_classic(): No grid lines.

  • u + theme_light(): Light grey axes and grid lines.

  • u + theme_linedraw(): Uses only black lines.

  • u + theme_minimal(): Minimal theme.

  • u + theme_void(): Empty theme.

  • u + theme(): Customize aspects of the theme such as axis, legend, panel, and facet properties.

u + labs(title = "Title") + theme(plot.title.position = "plot")
u + theme(panel.background = element_rect(fill = "blue"))

Faceting

Facets divide a plot into subplots based on the values of one or more discrete variables.

t <- ggplot(mpg, aes(cty, hwy)) + geom_point()
  • t + facet_grid(. ~ fl): Facet into a column based on fl.

  • t + facet_grid(year ~ .): Facet into rows based on year.

  • t + facet_grid(year ~ fl): Facet into both rows and columns.

  • t + facet_wrap(~ fl): Wrap facets into a rectangular layout.

  • t + facet_grid(drv ~ fl, scales = "free"): Set scales to let axis limits vary across facets. Also "free_x" for x axis limits adjust to individual facets and "free_y" for y axis limits adjust to individual facets.

Set labeller to adjust facet label:

  • t + facet_grid(. ~ fl, labeller = label_both): Labels each facet as “fl: c”, “fl: d”, etc.

  • t + facet_grid(fl ~ ., labeller = label_bquote(alpha ^ .(fl))): Labels each facet as “𝛼c”, “𝛼d”, etc.

Labels and Legends

Use labs() to label elements of your plot.

t + labs(x = "New x axis label", y = "New y axis label", title ="Add a title above the plot", subtitle = "Add a subtitle below title", caption = "Add a caption below plot", alt = "Add alt text to the plot", <Aes> = "New <Aes> legend title")
  • t + annotate(geom = "text", x = 8, y = 9, label = "A"): Places a geom with manually selected aesthetics.

  • p + guides(x = guide_axis(n.dodge = 2)): Avoid crowded or overlapping labels with guide_axis(n.dodge or angle).

  • n + guides(fill = "none"): Set legend type for each aesthetic: colorbar, legend, or none (no legend).

  • n + theme(legend.position = "bottom"): Place legend at “bottom”, “top”, “left”, or “right”.

  • n + scale_fill_discrete(name = "Title", labels = c("A", "B", "C", "D", "E")): Set legend title and labels with a scale function.

Zooming

  • t + coord_cartesian(xlim = c(0, 100), ylim = c(10,20)): Zoom without clipping (preferred).

  • t + xlim(0, 100) + ylim(10, 20) or t + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100)): Zoom with clipping (removes unseen data points).

CC BY SA Posit Software, PBC • info@posit.coposit.co

Learn more at ggplot2.tidyverse.org.

Updated: 2024-05.

packageVersion("ggplot2")
[1] '3.5.1'
Data visualization with ggplot2 :: Cheat Sheet (2024)
Top Articles
Latest Posts
Article information

Author: Zonia Mosciski DO

Last Updated:

Views: 6124

Rating: 4 / 5 (71 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Zonia Mosciski DO

Birthday: 1996-05-16

Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

Phone: +2613987384138

Job: Chief Retail Officer

Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.